- Эксперт советует

Эксперт советует. 0.5 процентов от суммы. Как высчитать процент от суммы? Задания с более сложными вопросами

Каждый человек в своей жизни практически повседневно сталкивается с понятием процентов. Причем это касается не только получения процентного значения от одного числа, но и решения задачи, как посчитать процент от суммы чисел. В повседневной жизни и обиходе многие не обращают на это внимания, тем не менее все эти вычисления заложены в нас еще со школьной скамьи.

Что такое процент

Что касается понятия процентов, то его можно объяснить самым простым способом, не вдаваясь пока в основы математических вычислений. На самом деле процент представляет собой какую-то часть чего-то еще. Неважно, в каком показателе будет выражено соответствие процента по отношению к основному исходному источнику. Главное — понимать, что такое представление может быть в виде самого процента (%) или в виде дроби, которая в конечном итоге и определяет отношение процентной части к исходному варианту.

Использование процентов на практике

Как рассчитывать проценты, каждый из нас знает еще из школьного курса математики. В повседневной жизни мы сталкиваемся с процентными соотношениями чуть ли не каждую минуту. Любая хозяйка, готовя какое-то блюдо, использует рецептуру, в которой представлено именно процентное соотношение. Самый простой пример: берем полстакана молока… Это и есть математическая трактовка того, что представляет собой определенная часть по отношению к целой.

За основу абсолютно всех вычислений принято считать 100 процентов (100%) или единицу (1), если расчет будет производиться с использованием дробей. От этого и отталкиваются при вычислении какой-либо составляющей от начального показателя.

То же самое касается и вопроса о том, как посчитать процент от суммы, когда в качестве начального (100-процентного) показателя выступает не одно число, а несколько. Вариантов расчета здесь может быть достаточно много. Рассмотрим самые основные.

Вычисление процентов по пропорции

Сейчас мы не будем брать в расчет вычисление процентов с использованием тех же таблиц офисных программ типа Excel, которые делают это в автоматическом режиме при задании соответствующей формулы.

В некоторых случаях используется калькулятор, на котором можно задавать вычисление подобных действий. Но речь сейчас не об этом.

Рассмотрим наиболее распространенные способы вычислений, знакомые нам из школьного курса математики.

Простейшим и самым распространенным способом является решение пропорции.

В данном случае исходное число задается в виде 100 процентов (скажем, некое произвольное число «a»), а его часть (допустим, «b») — в виде неизвестной «x». В математике это выглядит так:

a = 100%;

Исходя из правил пропорции, можно вычислить неизвестное число x. Для этого используется так называемый перекрестный метод. Иными словами, нужно умножить b на 100 и разделить на a. Точно такое же правило действует, если в случае составления пропорции поменять b и x местами, когда процент известен, а нужно вычислить часть в числовом выражении.

Быстрое вычисление процентов

Конечно, вычисление процентов при помощи пропорции является фундаментальным. Однако с применением дробных чисел это процедура упрощается до невозможности. Ведь что такое 50% на самом деле? Половина. То есть 1/2 или 0,5 (исходя из начального числа 1). Теперь понятно: чтобы вычислить половину, нужно умножить искомое число или на 1/2, или на 0,5 либо разделить на 2. Такой способ, правда, годится только для чисел, которые делятся без остатка.

В случае возникновения остатка или бесконечных знаков в периоде после запятой типа 0,33333333… лучше использовать дробные выражения наподобие 1/3. Кстати, именно дроби (в некоторых случаях иррациональные) со всей точностью отражают само число, ведь периодические цифры после запятой, сколько ни задавай, все равно целого числа не дадут. А так та же одна треть четко и понятно выражает саму суть.

В тех же рецептах, естественно, треть можно определить, так сказать, на глаз. А вот в химических процессах, особенно связанных с тонкой дозировкой компонентов, скажем, в фармацевтике, такой метод не подойдет. Здесь на глаз полагаться не приходится. Необходимо использовать точные соотношения ингредиентов, даже если один из показателей имеет вид числа с цифрой в периоде или представлен в виде той же иррациональной дроби. Но, как правило, к примеру при взвешивании, такие числа могут ограничиваться после запятой десятитысячными или максимум стотысячными.

Как рассчитать процент от суммы

Очень часто приходится сталкиваться с несколькими искомыми числами или их суммой. Вопрос о том, как расчитывать проценты от суммы, решается так же просто, как и в случае использования одного начального числа. Единственное, что нужно учесть в этом случае, так это обычное представление суммы в виде единого значения.

Например, у нас имеется два числа, a и b, и начальным показателем выступает число d. В данном случае пропорция будет выглядеть следующим образом:

d = 100%;

(a + b) = x.

Заметьте, сумму (a + b) все равно можно представить в виде единого числа. Пускай это будет z. В случае, когда мы задаем формулу a + b = z, пропорция приобретает совершенно стандартный вид:

d = 100%;

Как видим, ничего сложного в этом нет.

Есть и другой вариант, когда сумма (a + b) = 100%, а d = x.

Тут решение выглядит так:

(d x 100)/(a + b) или (d/(a + b)) + 100/(a + b).

Как уже понятно, здесь используется принцип общего знаменателя для дробей.

Если сложить a и b, сумма которых равна z, то пропорция опять возвращается к стандартному виду:

z = 100%;

То же применяется и в обратном порядке.

Математическое объяснение

С точки зрения математики и ее основ решение задачи о том, как рассчитать процент от суммы, сводится только к применению простейших правил раскрытия скобок при умножении суммы на единое число и поиска общего знаменателя, который, в общем-то, им и является. Другими словами, представить в формульном выражении это можно так:

a x (b + c) = ab + ac
,

где ab и ac — произведения слагаемых в скобках (b и c) на число (коэффициент) перед скобками a.

Собственно, в пропорции действует тот же метод. Допустим, у нас есть некое число z, представляющее собой 100%, и сумма чисел a и b. Процент, который нужно вычислить, обозначим неизвестным числом y. В таком варианте пропорция принимает вид:

z = 100%;

(a + b) = y.

Отсюда простое решение:

((a + b) x 100%)/z = ((a x 100%) + (b x 100%))/z

В скобки действия взяты для того, чтобы подчеркнуть, что операции умножения выполняется в первую очередь, а сложение произведений — во вторую. Такое же действие производится, если изначально сумма чисел составляет 100%.

Обратное вычисление

Очень часто в вопросе о том, как посчитать процент от суммы, возникает и недвусмысленный обратный перевод. На практике это связано, скажем, с обратным вычислением четверти. Всем известно, что этот показатель составляет 25% от начального числа. Пусть, например, цену товара увеличили на 25%, что составило 25 рублей. Нужно найти, сколько стал стоить данный товар. Вот теперь попробуем разобраться, как вычислить не первоначальное число, зная значение процента, а всю сумму, которая должна получиться в конечном итоге. Казалось бы, решение простое:

25 = 25% (1/4 или 0,25);

x = 100%.

Нет, абсолютно неверно. Так можно получить только изначальное число, без учета 25%. Для расчета всей суммы с учетом 25% нужно использовать формулу:

25 = 25%;

x = 100% + 25%.

Или 100/0,8, что и покажет значение 125 (100 + 25), поскольку 100% плюс 25% в выражении единицы является числом 1,25 (единица плюс четвертая часть), а в обратном виде (1/x) — это именно 0,8. Произведя вычисления, получим, что х = 125.

Заключение

Как видим, ничего особо сложного в том, как посчитать процент от суммы, нет. Правда, в школьной программе обратный перевод почему-то зачастую опускается. Потом у многих бухгалтеров, работающих над отчетами с оплатой того же НДС, очень часто возникают проблемы.

Так что стоит просто учесть основные правила вычисления процентов, и проблемы исчезнут сами собой.

С другой стороны, для удобства можно применять в равной степени как пропорции, так и использование дробей. В первом случае мы имеем, так сказать, классический вариант, а во втором — простое и универсальное решение. Опять же его лучше использовать в случае деления без остатка. Зато при вычислении наиболее популярных долей типа половины, четверти, трети и т. д. такой метод является очень удобным.

Обратные вычисления, как видно из вышеприведенных примеров, тоже чем-то сложным не являются. Главное — учесть обратный коэффициент при расчете искомого числа. Думается, теперь все встало на свои места. Как говорится, простая математика.

Доброго времени суток!

Проценты, скажу я вам, это не только что-то «скучное» на уроках математики в школе, но еще и архи-нужная и прикладная вещь в жизни (встречаемая повсюду: когда берете кредит, открываете депозит, считаете прибыль и т.д.). И на мой взгляд, при изучении темы «процентов» в той же школе — этому уделяется чрезвычайно мало времени ().

Возможно, из-за этого, некоторые люди попадают в не очень приятные ситуации (многие из которых можно было бы избежать, если бы вовремя прикинуть что там и как…).

Собственно, в этой статье хочу разобрать наиболее популярные задачи с процентами, которые как раз встречаются в жизни (разумеется, рассмотрю это как можно на более простом языке с примерами). Ну а предупрежден — значит вооружен (думаю, что знание этой темы позволит многим сэкономить и время, и деньги).

И так, ближе к теме…

Вариант 1: расчет простых чисел в уме за 2-3 сек.

В подавляющем большинстве случаев в жизни требуется быстро прикинуть в уме, сколько там это будет скидка в 10% от какого-то числа (например). Согласитесь, чтобы принять решение о покупке, вам ненужно высчитывать все вплоть до копейки (важно прикинуть порядок).

Наиболее распространенные варианты чисел с процентами привел в списке ниже, а также, на что нужно разделить число, чтобы узнать искомую величину.

Простые примеры:

  • 1% от числа = разделить число на 100 (1% от 200 = 200/100 = 2);
  • 10% от числа = разделить число на 10 (10% от 200 = 200/10 = 20);
  • 25% от числа = разделить число на 4 или два раза на 2 (25% от 200 = 200/4 = 50);
  • 33% от числа ≈ разделить число на 3;
  • 50% от числа = разделить число на 2.

Задачка!
Например, вы хотите купить технику за 197 тыс. руб. Магазин делает скидку в 10,99%, если вы выполняете какие-нибудь условия. Как это быстро прикинуть, стоит ли оно того?

Пример решения.
Да просто округлить эти пару чисел: вместо 197 взять сумму в 200, вместо 10,99% взять 10% (условно). Итого, нужно-то 200 разделить на 10 — т.е. мы оценили размер скидки, примерно в 20 тыс. руб. (при определенном опыте расчет делается практически на автомате за 2-3 сек.).

Точный расчет
: 197*10,99/100 = 21,65 тыс. руб.

Вариант 2: используем калькулятор телефона на Андроид

Когда результат нужен более точный, можно воспользоваться калькулятором на телефоне (в статье ниже приведу скрины с Андроида). Пользоваться им достаточно просто.

Например, вам нужно найти 30% от числа 900. Как это сделать?

Да достаточно просто:

  • открыть калькулятор;
  • написать 30%900

    (естественно, процент и число может быть отличными);
  • обратите внимание, что внизу под вашим написанным «уравнением» вы увидите число 270 — это и есть 30% от 900.

Ниже представлен более сложный пример. Нашли 17,39% от числа 393 675 (результат 68460, 08).

Если вам нужно, например, от 30 000 отнять 10% и узнать сколько это будет, то вы можете так это и написать (кстати, 10% от 30 000 — это 3000). Таким образом, если от 30 000 отнять 3000 — будет 27000 (что и показал калькулятор).

В общем-то, весьма удобный инструмент, когда нужно просчитать 2-3 числа и получить точные результаты, вплоть до десятых/сотых.

Вариант 3: считаем процент от числа (суть расчета + золотое правило)

Не всегда и не везде можно округлять числа и высчитывать проценты в уме. Причем, иногда требуется не только получить какой-то точный результат, но и понять саму «суть расчета» (например, чтобы просчитать сотню/тысячу различных задачек в Excel).

Допустим нам необходимо найти 17,39% от числа 393 675. Решим эту простую задачку…

Чтобы снять все точки на «Й», рассмотрю обратную задачу. Например, сколько процентов составляет число 30 000 от числа 393 675.

Вариант 4: считаем проценты в Excel

Excel хорош тем, что позволяет производить достаточно объемные расчеты: можно одновременно просчитывать десятки самых различных таблиц, связав их между собой. Да и вообще, разве вручную просчитаешь проценты для десятков наименований товаров, например.

Ниже покажу парочку примеров, с которыми наиболее часто приходится сталкиваться.

Задачка первая. Есть два числа, например, цена покупки и продажи. Надо узнать разницу между этими двумя числами в процентах (насколько одно больше/меньше другого).

Для более точного понимания, приведу еще один пример. Другая задачка: есть цена покупки и желаемый процент прибыли (допустим 10%). Как узнать цену продажи. Вроде бы все просто, но многие «спотыкаются»…

Дополнения по теме — всегда приветствуются…

На этом все, удачи!

Пример 1

Вы заходите в супермаркет и видите акцию на . Его обычная цена — 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

Умножьте 4,58 на 7, и вы получите 32,06 рубля.

Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

Пример 2

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

2. Как посчитать проценты, разделив число на 10

Сначала вы находите размер 10%, а потом делите или умножаете его, чтобы получить нужное количество процентов.

Пример

Допустим, вы кладёте на 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

3. Как посчитать проценты, составив пропорцию

Составлять пропорции — одно из наиболее полезных умений, которому вас научили в . С его помощью можно посчитать любые проценты. Выглядит пропорция так:

сумма, составляющая 100% : 100% = часть суммы: доля в процентном соотношении.

Или можно записать её так: a: b = c: d.

Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

Пример 1

Для примера вычислений используем рецепт . Вы хотите его приготовить и купили подходящую плитку шоколада массой 90 г, но не удержались и откусили кусочек-другой. Теперь у вас только 70 г шоколада, и вам нужно узнать, сколько масла положить вместо 200 г.

Сначала вычисляем процентную долю оставшегося шоколада.

90 г: 100% = 70 г: Х, где Х — масса оставшегося шоколада.

Х = 70 × 100 / 90 = 77,7%.

Теперь составляем пропорцию, чтобы выяснить, сколько масла нам нужно:

200 г: 100% = Х: 77,7%, где Х — нужное количество масла.

Х = 77,7 × 200 / 100 = 155,4.

Следовательно, в тесто нужно положить примерно 155 г масла.

Пример 2

Пропорция подойдёт и для расчёта выгодности скидок. Например, вы видите блузку за 1 499 рублей со скидкой 13%.

Сначала узнайте, сколько стоит блузка в процентах. Для этого отнимите 13 от 100 и получите 87%.

Составьте пропорцию: 1 499: 100 = Х: 87.

Х = 87 × 1 499 / 100.

Заплатите 1 304,13 рубля и носите блузку с удовольствием.

4. Как посчитать проценты с помощью соотношений

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

  • 20% — 1/5, то есть нужно делить число на 5;
  • 25% — 1/4;
  • 50% — 1/2;
  • 12,5% — 1/8;
  • 75% — это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

Пример

Вы нашли брюки за 2 300 рублей со скидкой 25%, но у вас в кошельке только 2 000 рублей. Чтобы узнать, хватит ли денег на обновку, проведите серию несложных вычислений:

100% — 25% = 75% — стоимость брюк в процентах от первоначальной цены после применения скидки.

2 400 / 4 × 3 = 1 800. Именно столько рублей стоят брюки.

5. Как посчитать проценты с помощью калькулятора

Если без калькулятора вам жизнь не мила, все вычисления можно делать с его помощью. А можно поступить ещё проще.

  • Чтобы посчитать проценты от суммы, введите число, равное 100%, знак умножения, затем нужный процент и знак %. Для примера с кофе вычисления будут выглядеть так: 458 × 7%.
  • Чтобы узнать сумму за вычетом процентов, введите число, равное 100%, минус, размер процентной доли и знак %: 458 – 7%.
  • Аналогично можно складывать, как в примере с депозитом: 530 000 + 5%.

6. Как посчитать проценты с помощью онлайн-сервисов

На сайте собраны разные калькуляторы, которые высчитывают не только проценты. Здесь есть сервисы для кредиторов, инвесторов, предпринимателей и всех тех, кто не любит считать в уме.

Инструкция

Для расчета процентов от числа на обычном выполните следующую последовательность действий. Наберите на клавиатуре число процентов (кнопку «%» пока нажимать не надо). Нажмите на любой из знаков арифметических действий («+», «-», «х», «/» — в данном случае эта кнопка используется в качестве разделителя при вводе чисел). Теперь наберите на калькуляторе то число от которого нужно посчитать проценты. Нажмите на кнопку «%». На индикаторе калькулятора высветится искомый результат.

Высчитывать проценты от числа можно и с помощью компьютера. Для этого запустите стандартный Windows. Для этого нажмите «Пуск» -> «Выполнить» -> наберите «calc» -> ОК. Если калькулятор загрузился в «Инженерном» виде, то установите его в «Обычный» режим («Вид» -> «Обычный»). После этого посчитайте от числа, так же как описано в предыдущем пункте инструкции.

Чтобы посчитать проценты от числа в программе MS Excel, наберите следующую последовательность знаков: «=» «число» «*» «количество процентов» «Enter». Так, например, чтобы посчитать 13% от 10000, введите в нужной следующую формулу: =10000*13% и нажмите «Enter». Если вы сделали все , то вместо появится число 1300.

Видео по теме

Источники:

  • процент от числа калькулятор

Процент в переводе с латыни («pro centum») означает одну сотую долю. Поэтому если нужно определенный процент от некоторой суммы денег, это означает, что надо определить, сколько сотых долей суммы вмещает в себя указанный процент. Если в уме посчитать не получается, проще всего посчитать процент с помощью какого-либо калькулятора.

Инструкция

Используйте для вычисления от заданной суммы, например, стандартный ОС Windows. Ссылку на его запуск можно найти в главном меню системы — откройте его нажатием клавиши WIN или щелчком мышки по кнопке «Пуск». Вам нужно перейти в раздел «Все программы», раскрыть в нем подраздел «Стандартные» и щелкнуть строку «Калькулятор». Однако хакеры не очень жалуют «мышиный компьютинг» и если вы тоже хотите почувствовать себя немножко хакером, то нажмите сочетание клавиш WIN + R, наберите команду calc и нажмите клавишу Enter. Обоими способами запускается один и тот же калькулятор Windows.

Найдите одну сотую долю от введенного числа. Для этого задействуйте клавишу с косой чертой (слэшем) на клавиатуре или в интерфейсе на экране, а затем введите число 100.

Умножьте сотую долю суммы на известное количество . Для этого нажмите на клавиатуре или щелкните мышкой на экране кнопку со звездочкой, а затем введите количество процентов.

Завершите вычисление процента от суммы нажатием на клавиатуре или щелчком на экране кнопки со знаком равенства. Калькулятор покажет вам числовое выражение заданного процента от введенной суммы.

Имея доступ в интернет при решении такой задачи можно обойтись и без калькулятора. В сети есть множество его аналогов, которые позволяют проделывать необходимые вычисления непосредственно в окне браузера. Если нет времени искать и такие -сервисы, то введите нужное математическое выражение непосредственно в поле запроса поисковой системы Google и сразу получите результат. Например, для расчета 13% от суммы в 25 512 14 копеек введите такой запрос: «25521,14 / 100 * 13».

Видео по теме

Обратите внимание

Как посчитать проценты %. В повседневности часто нужно уметь определить сколько процентов составляет то или иное число от целой части. Это математическое действие, которое проходят в средней школе, может нам пригодиться в случае подсчета всевозможных кредитных выплат, расчета соотношений при каких-либо покупках, а уж на работе регулярно приходится пользоваться сравнительными характеристиками, выраженными в процентах.

Полезный совет

Как посчитать проценты? 4 апреля 2012. Рубрика: Обучение. Комментариев нет. Наверняка вы не раз сталкивались с таким понятием как «процент». А некоторым даже требовалось его как-то посчитать. Первый способ – посчитать в уме: Число, от которого нужно найти процент, нужно поделить на сто и затем умножить на число процентов. Или же сразу умножить число на проценты, выраженные в сотых долях (проценты поделить на сто). Например, надо найти 28% от числа 924.

Источники:

  • как вычислить проценты из суммы

Открытие вклада – популярное решение для того, чтобы обеспечить сохранность сбережений и приумножить их. Доходность по вкладу зависит от установленных по нему процентов, а также способа их начисления. Именно поэтому важно уметь правильно их рассчитывать.

Вам понадобится

  • Калькулятор.

Инструкция

Для расчета процентов по вкладу уточните каким образом происходит начисление. Так, они могут начисляться в конце срока действия вклада, ежеквартально либо ежемесячно. Различают также два вида процентов — простые и сложные (с капитализацией).

При начислении простых процентов они с определенной периодичностью, установленной в договоре, перечисляются на отдельный счет и не присоединяются к сумме вклада. Рассчитать их достаточно просто. Для этого первоначальную сумму вклада умножьте на годовую ставку и на количество дней, на который открыт вклад. Затем полученную сумму останется разделить на 100 и на количество дней в году (365 или 366). Например, вклад суммой 100 тыс.р. открыт на 90 дней со ставкой 9.8% в год. Доходность по вкладу составит 2416,4 р. (100*9,8*90/365/100). Если вклад открывается на год нужно просто сумму вклада умножить на процент.

При вкладе с капитализацией начисленные проценты присоединяются к сумме вклада в сроки, которые прописаны в договоре. Чаще всего — ежемесячно или ежеквартально. Как правило, у вкладчика есть выбор — производить капитализацию процентов, либо снимать доходность. Но при условии капитализации увеличивается сумма вклада, соответственно, растут и начисляемые проценты. Для расчета суммы вклада с учетом процентов необходимо первоначальную сумму вложений умножить на годовую ставку и на количество дней, по которым банк проводит капитализацию и разделить на количество дней в году и на 100. Например, при вкладе 100 тыс.р. со ставкой 9.8% с ежемесячной капитализацией процентов сумма процентов за январь составит 832,3 р. (100*9,8*31/365). Получается, что за февраль проценты будут начисляться уже по сумме вклада 100 832.3 р. Дальнейшие расчеты проводятся аналогично. Если вы хотите рассчитать сумму процентов по вкладу за установленный период необходимо первоначальную сумму вклада умножить на ((1 + годовая процентная ставка*количество дней/количество дней в году/100) в степени (число периодов начисления процентов — 1).

Процент
— это одна сотая доля числа, принимаемого за целое. Проценты используются для обозначения отношения части к целому, а также для сравнения величин.

Используя математический калькулятор процентов Вы сможете производить всевозможные расчеты с использованием процентов. Округляет результаты до нужного количества знаков после запятой. Сколько процентов составляет число X от числа Y. Какое число соответствует X процентам от числа Y. Прибавление или вычитание процентов из числа.

Онлайн калькулятор процентов позволяет выполнить следующие операции:

Найти процент от числа

Чтобы найти процент p
от числа, нужно умножить это число на дробь p/100

Найдем 12% от числа 300:
300 · 12/100 = 300 · 0,12 = 36

12% от числа 300 равняется 36.

Например, товар стоит 500 рублей и на него действует скидка 7%. Найдем абсолютное значение скидки:
500 · 7/100 = 500 · 0,07 = 35

Таким образом, скидка равна 35 рублей.

Сколько процентов составляет одно число от другого

Чтобы вычислить процентное отношение чисел, нужно одно число разделить на другое и умножить на 100%.

Вычислим, сколько процентов составляет число 12 от числа 30:
12/30 · 100 = 0,4 · 100 = 40%

Число 12 составляет 40% от числа 30.

Например, книга содержит 340 страниц. Вася прочитал 200 страниц. Вычислим, сколько процентов от всей книги прочитал Вася.
200/340 · 100% = 0,59 · 100 = 59%

Таким образом, Вася прочитал 59% от всей книги.

Прибавить проценты к числу

Чтобы прибавить к числу p
процентов, нужно умножить это число на (1 + p/100)

Прибавим 30% к числу 200:
200 · (1 + 30/100) = 200 · 1,3 = 260

200 + 30% равняется 260.

Например, абонемент в бассейн стоит 1000 рублей. Со следующего месяца обещали поднять цену на 20%. Вычислим, сколько будет стоить абонемент.
1000 · (1 + 20/100) = 1000 · 1,2 = 1200

Таким образом, абонемент будет стоить 1200 рублей.

Вычесть проценты из числа

Чтобы отнять от числа p
процентов, нужно умножить это число на (1 — p/100)

Отнимем 30% от числа 200:
200 · (1 — 30/100) = 200 · 0,7 = 140

200 — 30% равняется 140.

Например, велосипед стоит 30000 рублей. Магазин сделал на него скидку 5%. Вычислим, сколько будет стоить велосипед с учетом скидки.
30000 · (1 — 5/100) = 30000 · 0,95 = 28500

Таким образом, велосипед будет стоить 28500 рублей.

На сколько процентов одно число больше другого

Чтобы вычислить, на сколько процентов одно число больше другого, нужно первое число разделить на второе, умножить результат на 100 и вычесть 100.

Вычислим, на сколько процентов число 20 больше числа 5:
20/5 · 100 — 100 = 4 · 100 — 100 = 400 — 100 = 300%

Число 20 больше числа 5 на 300%.

Например, зарплата начальника равна 50000 рублей, а сотрудника — 30000 рублей. Найдем, на сколько процентов зарплата начальника больше:
50000/35000 · 100 — 100 = 1,43 * 100 — 100 = 143 — 100 = 43%

Таким образом, зарплата начальника на 43% выше зарплаты сотрудника.

На сколько процентов одно число меньше другого

Чтобы вычислить, на сколько процентов одно число меньше другого, нужно из 100 вычесть отношение первого числа ко второму, умноженное на 100.

Вычислим, на сколько процентов число 5 меньше числа 20:
100 — 5/20 · 100 = 100 — 0,25 · 100 = 100 — 25 = 75%
Число 5 меньше числа 20 на 75%.

Например, фрилансер Олег в январе выполнил заказы на 40000 рублей, а в феврале на 30000 рублей. Найдем, на сколько процентов Олег в феврале заработал меньше, чем в январе:
100 — 30000/40000 · 100 = 100 — 0,75 * 100 = 100 — 75 = 25%

Таким образом, в феврале Олег заработал на 25% меньше, чем в январе.

Найти 100 процентов

Если число x
это p
процентов, то найти 100 процентов можно умножив число x
на 100/p

Найдем 100%, если 25% это 7:
7 · 100/25 = 7 · 4 = 28

Если 25% равняется 7, то 100% равняется 28.

Например, Катя копирует фотографии с фотоаппарата на компьютер. За 5 минут скопировалось 20% фотографий. Найдем, сколько всего времени занимает процесс копирования:
6 · 100/20 = 6 · 5 = 30

Получаем, что процесс копирования всех фотографий занимает 30 минут.