- Объективно

Объективно. Как посчитать (высчитать) процент от суммы. Процент от числа калькулятор

Используя калькулятор процентов Вы сможете производить всевозможные расчеты с использованием процентов. Округляет результаты до нужного количества знаков после запятой.

Сколько процентов составляет число X от числа Y. Какое число соответствует X процентам от числа Y. Прибавление или вычитание процентов из числа.

Калькулятор процентов

очистить форму

Сколько составляет % от числа

Расчет

0% от числа 0 = 0

Калькулятор процентов

очистить форму

Сколько % составляет число от числа

Расчет

Число 15 от числа 3000 = 0.5%

Калькулятор процентов

очистить форму

Прибавить % к числу

Расчет

Прибавить 0 % к числу 0 = 0

Калькулятор процентов

очистить форму

Вычесть % из числа

Расчет

очистить всё

Калькулятор разработан специально для расчета процентов. Позволяет выполнять разнообразные расчеты при работе с процентами. Функционально состоит из 4-х разных калькуляторов. Примеры вычислений на калькуляторе процентов смотрите ниже.

Процентом в математике называют сотую часть числа. К пример 5% от 100 равно 5.
Данный калькулятор позволит точно посчитать посчитать процент от заданного числа. Имеются различные режимы расчета. Вы сможете производить различные расчёты с использованием процентов.

  • Первый калькулятор нужен когда вы хотите рассчитать процент от суммы. Т.е. Вы знаете значение процента и суммы
  • Второй — если нужно посчитать сколько процентов составляет Х от Y. X и Y это числа, а вы ищете процент первого во втором
  • Третий режим — прибавление процента от указанного числа к данному числу. К примеру у Васи 50 яблок. Миша принёс Васе ещё 20% от яблок. Сколько яблок у Васи?
  • Четвёртый калькулятор противоположен третьему. У Васи 50 яблок, а Миша забрал 30% яблок. Сколько яблок осталось у Васи?

Частые задачи

Задача 1. Индивидуальный передприниматель получает каждый месяц 100 тыс рублей. Он работает по упрощенке и платит налогов 6% в месяц. Сколько ИП должен заплатить налогов в месяц?

Решение
: Пользуемся первым калькулятором. Вводим в первое поле ставку 6, в второе 100000
Получаем 6000 руб. — сумма налога.

Задача 2. У Миши 30 яблок. 6 он отдал Кате. Сколько процентов от общего числа яблок Миша отдал Кате?

Решение:
Пользуемся вторым калькулятором — в первое поле вводим 6, во второе 30. Получаем 20%.

Задача 3. У банка Тинькофф за пополнение вклада из другого банка вкладчик получает 1% сверху от суммы пополнения. Коля пополнил вклад переводом из другого банка на сумму 30 000. На какую итоговую сумму будет пополнен вклад Коли.

Решение
: пользуемся 3м калькулятором. Вводим 1 в первое поле, 10000 во второе. Жмём расчёт получаем сумму 10100 руб.

Может пригодиться не только ученику средней школы. В обыденной жизни этот навык необходим для того, чтобы высчитать кредитную оплату, подсчитать и проверить, верно ли бухгалтера рассчитали вам величину налогообложения при получении заработной платы. А многим сотрудникам самых различных фирм и предприятий это умение просто необходимо для работы.

Что же это такое — процент? Из школьной программы каждый помнит, что процентом в мире принято считать сотую часть от чего-либо. То есть, говоря иначе, выражение «3 процента» следует понимать как 3 сотых от какого-либо числа. Для краткости записи люди приняли обозначение слова «процент» значком «%».

И со школьной скамьи все мы знаем, как посчитать процент от делят на сто, находя величину одного процента, а затем полученное частное умножают на число, обозначающее количество процентов, которые нужно найти.

Например, надо узнать, чему равно 28% от 500. Ход рассуждений должен быть таков:

  1. Находим размер 1% от 500 делением.
  1. Находим заданное число умножением полученного частного от деления на 100.

То есть, 28% от 500 — это 28/100 от 500. По-другому можно так записать это действие:

500 Х 28/100 = 140.

Так от числа не всегда бывает легко в уме, а ручка и бумага под рукой не везде, то сегодня очень многие пользуются калькуляторами.

Для вычисления можно воспользоваться описанным способом: заданное число разделить на сто и умножить на необходимое количество процентов.

Есть более быстрая возможность подсчёта:

  1. В калькулятор вводится заданное число. В нашем случае — 500.
  2. Далее нажимается клавиша «умножить».
  3. Затем набираем число искомых процентов — для нашего варианта это 28.
  4. Вместо равенства выбираем на калькуляторе знак %.
  5. Получаем результат — это 140 в нашем примере.
  1. В ячейке, которая отображает рассчитанный процент, вводится знак равенства «=».
  2. Далее записывается заданное число, от которого нужно искать процент, либо «адрес» той ячейки, где это число уже введено. Мы в нашем примере введём число 500.
  3. Третьим шагом будет выставление знака «умножить» или «*».
  4. Теперь следует записать то число, которое отражает количество искомых процентов. Для нас это 28.
  5. Предпоследним действием будет введение знака «процент», который имеет вид «%».
  6. Для получения результата осталось только нажать на клавиатуре кнопку «Enter». Результат — 140 — не замедлит появиться на мониторе.

Перед началом работы в программе «Excel» следует левой кнопкой мышки выставить в ячейках таблицы соответствующий формат или воспользоваться функцией «меню»: «формат — ячейки — число — процентный».

Например, нам даны числа 140 и 500. Вопрос поставлен таким образом: сколько процентов составляет 140 от 500?

  1. Сначала найдём, чему равен один процент от 500. То есть, идём по старой схеме и делим 500 на 100. Получаем 5.
  2. Теперь осталось узнать, сколько таких процентов содержит заданное число 140. Для этого 140 нужно поделить на 5. Получаем те же самые 28 процентов!
  3. В одну формулу это вычисление можно записать следующим образом:

140: (500: 100) = 140: 500/100 = 140: 500 Х 100 = 28.

То есть, число 140 от 500 составляет 28 процентов.

А для того, чтобы узнать, сколько процентов одно число составляет от другого, нам следует меньшее число разделить на большее и частное умножить на 100.

Эти навыки чрезвычайно важны предпринимателю, который занимается торговлей. При установлении цен на товар обычно требуется умение, как посчитать процент от числа, так как при помощи этого действия делается необходимая «накрутка» на товар. Удобнее всего делать на весь ассортимент одинаковую накрутку в процентах, например, 15%.

Но для исчисления чистого дохода нужно и другое умение. Например, дневная выручка в ларьке составила 3450 рублей. Каков же чистый доход от проданных товаров? Некоторые начинающие предприниматели наивно высчитывают 15% от валовой выручки, и совершают грубейшую ошибку! Изъяв из оборота полученную таким неверным способом «накрутку», потом они сидят и ломают голову, откуда появилась недостача.

А всё очень просто. После накрутки в товаре стало присутствовать не 100% от стоимости, а 100% + 15% = 115%. Поэтому чтобы найти сумму вырученной добавочной стоимости, 15% высчитывают так:

  1. Находят 1% от выручки, разделив её не на 100, а на 115. То есть, в нашем случае
  1. А теперь уже можно искать добавочную стоимость, которую можно храбро извлекать из оборота.

Эти цифры взяты «с потолка», поэтому не стоит серьёзно относиться к этим данным. А вот сами способы вычисления заслуживают внимания, в них нет ошибок.

Доброго времени суток, уважаемые гости! А вы хорошо учились в школе? Я вот на отлично, но и у меня возникают ситуации, когда нужно освежить в памяти школьные знания.

К сожалению, среди всего объема информации очень сложно выделить ту, которая может понадобиться на самом деле.
Давайте сегодня вспомним, как узнать процент от числа.

Математика необходима в обычной жизни, ведь она учит мыслить нестандартно и развивает логику. Знания вычислительных манипуляций упрощает жизнь в материальном отношении.

Вот примеры использования %:

  1. Данное отношение позволяет улучшить восприятие информации, чтобы сравнить определенные параметры. Например, тело человека состоит из 70 % воды, а медузы – 98%.
  2. Применяются такие расчеты и в экономике. Это нужно, к примеру для расчетов прибыли.
  3. Знания необходимы и для анализа конкретных величин. Например, разницу между зарплатами в разные месяцы.

Понятие процента

Что интересно, индусы еще в 5-ом столетии использовали проценты в расчетах. В Европе о десятичных дробях узнали только через тысячелетие.

Данное понятие ввел бельгийский ученый Симон Стевин
. В 16-ом столетии была опубликована таблица с величинами.
Само слово имеет латинское происхождение. Переводится слово, как «со ста». При этом имеется ввиду одна сотая часть от какой-либо величины.

% предоставляют возможность сравнивать составляющие одного целого без сложностей. Возникновение долей позволило упростить расчеты, и они стали стандартным явлением.

Способы расчета

В учебнике математики за 5-ый класс можно узнать, что % составляет сотую часть от числа. Чтобы узнать, сколько % от определенного значения, можно воспользоваться пропорцией и составить правило креста.

Например, нужно найти 500 от 1000. При этом данные, которые располагаются напротив друг друга необходимо перемножить, а затем разделить на третье число.

При этом числа пишутся под цифрами, а проценты под такими же показателями.
Получается:

1000 – 100%;

500 – x%.

Получаем: X=(500*100)/1000.

X=50 %.

Можно использовать и программу Excel.

Например, нужно найти сумму, которая составляет 15% от целого числа 8500.

Сначала создайте на рабочем столе лист Excel.

Затем откройте документ и в выделенной строке введите:

  • = (равно);
  • затем 8500;
  • после этого нажмите * (умножить);
  • затем 15;
  • после следует нажать клавишу % и Enter.

Как просчитать процент на калькуляторе

Затем в поля нужно ввести запрашиваемые данные и получить результат. При этом можно узнать, как % от общего числа, так и сколько процентов составляет значение одного числа от другого.
Подводя итоги, можно сказать, что калькулятор позволяет определиться с такими вопросами:

  1. Вычислить определенный % из определенного значения. Или, если известен %, то прибавить его к какому-то числу.
  2. Какой % составляет от заданного показателя.
  3. Сколько % содержит одно значение от другого.

На обычном калькуляторе также есть функция определения %. Если опция есть, то должна быть клавиша, где изображен %.

Для этого найдите на его клавиатуре кнопку с изображением процента (%).

Например, давайте выясним, сколько 12 составляет от 125.

Для этого проведем следующие манипуляции:

Введите 125 на калькуляторе.

Нажмите умножить (*).

Нажмите 12.

Затем нажмите кнопку с процентом.

При этом на экране отобразиться результат – 9,6%.

Таким образом, можно найти любые другие значения с двумя числами. Калькулятором можно и воспользоваться на мобильном телефоне.

В ноутбуке или компьютере полезную программку можно отыскать через меню пуск.

Расчет с помощью формул

Итак, рассмотрим некоторые формулы для расчета.
Формула вычисления процента от определенного значения.

Если известно число А и составляющее от процента В, то процент от А находится так:

В=А*Р/100%.

Есть специальная формула для вычисления по проценту. При этом нужно узнать от какого значения %.

Если известно В, которое составляет Р процентов от числа А, то количество А находится так.

А=В*100%/Р.

Можно также вычислить процентное значение одного числа от другого. Если известны два значения А и В, то можно выяснить, какой % содержит В от А. При этом применяется такая формула. Р=В/А*100%.

Чтобы узнать насколько увеличилось число по сравнению с исходным, также есть определенная формула.

Если известно число А и необходимо найти В, которое на определенный процент больше числа А, то применяется такая формула: В=А(1+Р/100%)
.
Также есть формула для расчетов, которое меньше исходного на какой-то заданный процент.

Если мы знаем число А и необходимо отыскать В, которое на Р % меньше А, то применяется такое вычисление: В=А(1-Р/100%).

Надеюсь вам пригодиться информация в моей статье. Если хотите дополнить ее, то напишите в комментариях.

Вспоминайте школьные знания и используйте их в обычной жизни. Математические расчеты здорово упрощают жизнь.

На сегодня у меня все. До свидания, дорогие почитатели моего блога!

Проценты
— одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно
прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%,
промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка
и т.д. Ясно, что понимание такой информации необходимо в современном обществе.

Одним процентом от любой величины — денежной суммы, числа учащихся школы и т.д. — называется одна сотая ее часть.
Обозначается
процент знаком %, Таким образом,
1% — это 0,01, или (frac{1}{100} ) часть величины

Приведем примеры:
— 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) — это 2300/100 = 23 рубля;
— 1% от населения России, равного примерно 145 млн. человек (2007 г.), — это 1,45 млн. человек;
— 3%-я концентрация раствора соли — это 3 г соли в 100 г раствора (напомним, что концентрация раствора — это часть, которую
составляет масса растворенного вещества от массы всего раствора).

Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке
«хлопок 100%» означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих
учеников.

Слово «процент» происходит от латинского pro centum, означающего «от сотни» или «на 100». Это словосочетание можно встретить и в
современной речи. Например, говорят: «Из каждых 100 участников лотереи 7 участников получили призы». Если понимать это выражение
буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших
призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое
понимание соответствует происхождению слова «процент»: 7% — это 7 из 100, 7 человек из 100 человек.

Знак «%» получил распространение в конце XVII века. В 1685 году в Париже была издана книга «Руководство по коммерческой
арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от cento). Однако
наборщик принял это «с/о» за дробь и напечатал «%». Так из-за опечатки этот знак вошел в обиход.

Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.

Чтобы выразить проценты числом, нужно количество процентов разделить на 100.
Например:

(58% = frac{58}{100} = 0,58; ;;; 4,5% = frac{4,5}{100} = 0,045; ;;; 200% = frac{200}{100} = 2 )

Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить
на 100:

(0,58 = (0,58 cdot 100)% = 58% )
(0,045 = (0,045 cdot 100)% = 4,5% )

В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина — 50%,
четверть — 25%, три четверти — 75%, пятая часть — 20%, три пятых — 60% и т.д.

Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью
процентов. Например, в сообщениях «Минимальная заработная плата повышена с февраля на 50%» и «Минимальная заработная плата повышена
с февраля в 1,5 раз» говорится об одном и том же.
Точно так же увеличить в 2 раза — это значит увеличить на 100%, увеличить в 3 раза — это значит увеличить на 200%, уменьшить
в 2 раза — это значит уменьшить на 50%.

Аналогично
— увеличить на 300% — это значит увеличить в 4 раза,
— уменьшить на 80% — это значит уменьшить в 5 раз.

Задачи на проценты

Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби.
В простейших задачах на проценты некоторая величина а принимается за 100% («целое»), а ее часть b выражается числом p%.

В зависимости от того, что неизвестно — а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и
соответствующие задачи на дроби, но перед их решением число р% выражается дробью.

1. Нахождение процента от числа.

Чтобы найти (frac{p}{100} ) от a, надо a умножить на (frac{p}{100} ):

(b = a cdot frac{p}{100} )

Итак, чтобы найти р% от числа, надо это число умножить на дробь (frac{p}{100} ). Например, 20% от 45 кг равны 45 0,2 = 9 кг,
а 118% от х равны 1,18x

2. Нахождение числа по его проценту.

Чтобы найти число по его части b, выраженной дробью (frac{p}{100} , ; (p neq 0) ), надо b разделить на (frac{p}{100} ):
(a = b: frac{p}{100} )

Таким образом, чтобы найти число по его части, составляющей р% этого числа, надо эту часть разделить на (frac{p}{100} ).

Например, если 8% длины отрезка составляют 2,4 см, то длина всего отрезка равна 2,4:0,08 = 240:8 = 30 см.

3. Нахождение процентного отношения двух чисел.

Чтобы найти, сколько процентов число b составляет от а ((a neq 0) ), надо сначала узнать, какую часть b составляет от а, а
затем эту часть выразить в процентах:

(p = frac{b}{a} cdot 100% )
Значит, чтобы узнать, сколько процентов первое число составляет от второго, надо первое число разделить на второе и результат
умножить на 100.

Например, 9 г соли в растворе массой 180 г составляют (frac{9 cdot 100}{180} = 5% ) раствора.

Частное двух чисел, выраженное в процентах, называется процентным отношением
этих чисел. Поэтому последнее правило
называют правилом нахождения процентного отношения двух чисел.

Нетрудно заметить, что формулы

(b = a cdot frac{p}{100}, ;; a = b: frac{p}{100}, ;; p = frac{b}{a} cdot 100% ;; (a,b,p neq 0) )
взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу
считают основной и называют формулой процентов.
Формула процентов объединяет все три типа задач на дроби, и, при желании,
можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.

Составные задачи на проценты решаются аналогично задачам на дроби.

Простой процентный рост

Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется «пеня» (от латинского роеnа
— наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма
составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 0,019 = 19 р.,
а всего 1019 р.

Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую
формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.

Пусть S — ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n — число просроченных дней. Сумму,
которую должен заплатить человек после n дней просрочки, обозначим S n .
Тогда за n дней просрочки пеня составит рn% от S, или (frac{pn}{100}S ), а всего придется заплатить
(S + frac{pn}{100}S = left(1+ frac{pn}{100} right) S )
Таким образом:
(S_n = left(1+ frac{pn}{100} right) S )

Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.

Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов.
Как и выше, нетрудно убедиться, что в этом случае
(S_n = left(1- frac{pn}{100} right) S )

Эта формула также называется формулой простого процентного роста,
хотя заданная величина в действительности убывает.
Рост в этом случае «отрицательный».

Сложный процентный рост

В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный
договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете
доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход —
«проценты», как его обычно называют.

Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего
года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются «проценты на проценты»,
или, как их обычно называют, сложные проценты.

Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех
лет не будет брать деньги со счета.

10% от 1000 р. составляют 0,1 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)

10% от новой суммы 1100 р. составляют 0,1 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)

10% от новой суммы 1210 р. составляют 0,1 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)

Нетрудно представить себе, сколько при таком непосредственном, «лобовом» подсчете понадобилось бы времени для нахождения суммы
вклада через 20 лет. Между тем подсчет можно вести значительно проще.

А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1
раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма
увеличится в 1,1 1,1 = 1,1 2 раз.

Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 1,1 2 = 1,1 3
раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое:
1,1 3 1000 = 1,331 1000 — 1331 (р.)

Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма,
которая будет на счете через n лет, равна S n р.

Величина p% от S составляет (frac{p}{100}S ) р., и через год на счете окажется сумма
(S_1 = S+ frac{p}{100}S = left(1+ frac{p}{100} right)S )
то есть начальная сумма увеличится в (1+ frac{p}{100} ) раз.

За следующий год сумма S 1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
(S_2 = left(1+ frac{p}{100} right)S_1 = left(1+ frac{p}{100} right) left(1+ frac{p}{100} right)S = left(1+ frac{p}{100} right)^2 S )

Аналогично (S_3 = left(1+ frac{p}{100} right)^3 S ) и т.д. Другими словами, справедливо равенство
(S_n = left(1+ frac{p}{100} right)^n S )

Эту формулу называют формулой сложного процентного роста
, или просто формулой сложных процентов.