- Объективно

Объективно. Требуется определить значение внутренней нормы доходности. Расчет IRR в Excel с помощью функций и графика


Перед выбором любого инвестиционного проекта рассчитывается Internal Rate of Return -IRR внутренняя норма доходности. При этом вычисляется размер чистого приведённого дохода при разных ставках дисконта, что можно делать как вручную, так и с помощью автоматизированных методов. Благодаря этому показателю можно определить прибыльность возможной инвестиции и оптимальный размер кредитной ставки. Однако у данного метода есть и свои недостатки. Что такое IRR на практике и как рассчитать показатель с применением формулы расчёта, будет показано ниже.

Определение IRR и экономический смысл

Internal Rate of Return или IRR в русском варианте определяется как внутренняя норма доходности (ВНД), или другими словами – внутренняя норма прибыли, которую ещё нередко называют внутренней нормой рентабельности.

Такой внутренней нормой доходности является ставка процента, при которой дисконтированная стоимость всех денежных потоков проекта (NPV) будет равной нулю. При подобных условиях обеспечивается отсутствие убытков, то есть доходы от инвестиций тождественны затратам на проект.

Экономический смысл вычисления в том, чтобы:

  1. Охарактеризовать прибыльность потенциального вложения
    . Чем выше значение нормы доходности IRR, тем выше показатель рентабельности проекта, и, соответственно, при выборе из двух возможных вариантов инвестиций, при прочих равных, выбирают тот, где расчёт IRR показал более высокую ставку.
  2. Определить оптимальную ставку кредита
    . Поскольку расчёт ВНД показывает максимальную цену, при которой инвестиции останутся безубыточными, с ним можно соотнести с показателем ставку кредита, который компания может взять для инвестиций. Если процент по запланированному кредиту больше полученного значения ВНД, то проект будет убыточным. И наоборот – если ставка кредита ниже ставки инвестирования (ВНД), то заёмные денежные средства принесут добавочную стоимость.

Например, если взять кредит, по которому нужно выплачивать 15% годовых и вложить в проект, который принесёт 20% годовых, то инвестор на проекте зарабатывает. Если в оценках прибыльности проекта будет допущена ошибка и IRR окажется меньше 15%, то банку нужно будет отдать больше, чем принесёт проектная деятельность. Точно так же поступает и сам банк, привлекая деньги от населения и выдавая кредиторам под больший процент. Таким образом, рассчитав IRR, можно легко и просто узнать допустимый верхний уровень – предел стоимости заёмного капитала.

Фактически эти возможности являются одновременно и преимуществами, которые даёт инвестору вычисление ВНД. Инвестор может сравнить перспективные проекты между собой с точки зрения эффективности использования капитала. Кроме того, преимущество применения ВНД ещё и в том, что это позволяет сравнивать проекты с разным периодом вложений – горизонтов инвестирования. ВНД выявляет тот проект, который может приносить большие доходы в долгосрочной перспективе.

Однако особенности ВНД в том, что и полученный показатель не позволяет оценить инвестиционный проект исчерпывающе.

Чтобы оценить инвестиционную привлекательность (в том числе – в сравнении с другими проектами), IRR сравнивается, например, с требуемым размером доходности капитала (эффективной ставкой дисконтирования). За такую сравнительную величину практики часто берут средневзвешенную стоимость капитала (WACC). Но, вместо WACC может быть взята и другая норма доходности – например, ставка по депозиту банка. Если после проведения расчётов окажется, что по банковскому депозиту процентная ставка составляет, например, 15%, а IRR потенциального проекта – 20%, то целесообразнее деньги вкладывать в проект, а не размещать на депозите.

Формула внутренней нормы доходности

Для определения показателя IRR, опираются на уравнение для чистой приведённой рентабельности:

Исходя из этого, для внутренней нормы доходности формула будет выглядеть следующим образом:

Здесь r – процентная ставка.

Эта же IRR-формула в общем виде будет выглядеть таким образом.

Здесь CF t – денежные потоки в момент времени, а n – число периодов времени. Важно отметить, что показатель IRR (в отличие от NPV) применим только к процессам с характеристиками инвестиционного проекта – то есть, для случаев, когда один денежный поток (чаще всего – первый – первоначальная инвестиция) является отрицательным.

Примеры расчёта IRR

С необходимостью расчёта показателя IRR сталкиваются не только профессиональные инвесторы, но и практически любой человек, который хочет выгодно разместить накопленные средства.

Пример расчёта IRR при бизнес-инвестировании

Приведём пример использования метода расчёта внутренней нормы прибыли при условии постоянной барьерной ставки.

Характеристики проекта:

  • Размер планируемой инвестиции — 114500$.
  • Доходы от инвестирования:
  • на первом году: 30000$;
  • на втором году: 42000$;
  • на третьем году: 43000$;
  • на четвёртом году: 39500$.
  • Размер сравниваемой эффективной барьерной ставки – на уровне 9,2%.

В данном примере расчёта используется метод последовательного приближения. «Виды» барьерных ставок подбираются так, чтобы получились минимальные NPV-значения по модулю. Затем проводится аппроксимация.

Пересчитаем денежные потоки в виде текущих стоимостей:

  • PV1 = 30000 / (1 + 0,1) = 27272,73$
  • PV2 = 42000 / (1 + 0,1)2 = 34710,74$
  • PV3 = 43000 / (1 + 0,1)3 = 32306,54$
  • PV4 = 39500 / (1 + 0,1)4 = 26979,03$

NPV(10,0%) = (27272,73 + 34710,74 + 32306,54 + 26979,03) — 114500 = 6769,04$

  • PV1 = 30000 / (1 + 0,15)1 = 22684,31$
  • PV2 = 42000 / (1 + 0,15)2 = 31758,03$
  • PV3 = 43000 / (1 + 0,15)3 = 28273,20$
  • PV4 = 39500 / (1 + 0,15)4 = 22584,25$

NPV(15,0%) = (22684,31 + 31758,03 + 28273,20 + 22584,25) — 114500 = -9200,21$

Предполагая, что на отрезке а-б NPV(r)-функция прямолинейна, используем уравнение для аппроксимации на этом участке прямой:

IRR-расчёт:

IRR = ra + (rb — ra) * NPVa /(NPVa — NPVb) = 10 + (15 — 10)* 6769,04/ (6769,04 – (-9200,21)) = 12,12%

Поскольку должна быть сохранена определённая зависимость, проверяем результат по ней. Формула расчёта считается справедливой, если соблюдены следующие условия: NPV(a) > 0 > NPV(b) и r(a) < IRR < r(b).

Рассчитанная величина IRR показывает, что внутренний коэффициент окупаемости равняется 12,12%, а это превышает 9,2% (эффективную барьерную ставку), а, значит, и проект может быть принят.

Для устранения проблемы множественного определения IRR и избегания (при знакопеременных денежных потоках) неправильного расчёта чаще всего строится график NPV(r).

Пример такого графика представлен выше для двух условных проектов А и Б с разными ставками процента. Значение IRR для каждого из них определяется местом пересечения с осью Х, поскольку этот уровень соответствует NPV=0. Так в примере видно, что для проекта А место пересечения со шкалой будет в точке с отметкой 14,5 (IRR=14,5%), а для проекта Б место пересечения – точка с отметкой 11,8 (IRR=11,8%).

Сравнительный пример частного инвестирования

Ещё одним примером необходимости определения IRR может служить иллюстрация из жизни обычного человека, который не планирует запускать какой-либо бизнес-проект, а просто хочет максимально выгодно использовать накопленные средства.

Допустим, наличие 6 млн. рублей требует либо отнести их в банк под процент, либо, приобрести квартиру, чтобы сдавать её 3 года в аренду, после чего продать, вернув основной капитал. Здесь отдельно будет рассчитываться IRR для каждого решения.

  1. В случае с банковским вкладом есть возможность разместить средства на 3 года под 9% годовых. На предлагаемых банком условиях, можно в конце года снимать 540 тыс. рублей, а через 3 года – забрать все 6 млн. и проценты за последний год. Поскольку вклад – это тоже инвестиционный проект, для него рассчитывается внутренняя норма рентабельности. Здесь она будет совпадать с предлагаемым банком процентом – 9%. Если стартовые 6 млн. рублей уже есть в наличии (то есть, их не нужно одалживать и платить процент за использование денег), то такие инвестиции будут выгодны при любой ставке депозита.
  2. В случае с покупкой квартиры, сдачей её в аренду и продажей ситуация схожая – тоже в начале вкладываются средства, затем забирается доход и, путём продажи квартиры, возвращается капитал. Если стоимость квартиры и аренды не меняются, то арендная плата из расчёта 40 тыс. в месяц за год будет равняться 480 тыс. рублей. Расчёт показателя IRR для проекта «Квартира» покажет 8% годовых (при условии бесперебойной сдачи квартиры в течение всего инвестиционного срока и возврата капитала в размере 6 млн.

    IRR — внутренняя норма доходности

Из этого следует вывод, что, в случае неизменности всех условий, даже при наличии собственного (а не заёмного) капитала ставка IRR будет выше в первом проекте «Банк» и этот проект будет считаться более предпочтительным для инвестора.

При этом ставка IRR во втором случае останется на уровне 8% годовых, независимо от того, сколько лет квартира будет сдаваться в аренду.

Однако если инфляция повлияет на стоимость квартиры, и она ежегодно последовательно будет увеличиваться на 10%, 9% и 8% соответственно, то к концу расчётного периода квартиру можно будет продать уже за 7 млн. 769 тыс. 520 рублей. На третий год проекта такое увеличение денежного потока продемонстрирует IRR в размере 14,53%. В этом случае проект «Квартира» будет более рентабельным, чем проект «Банк», но только при условии наличия собственного капитала. Если же для обретения стартовой суммы нужно будет обратиться в другой условный банк за займом, то с учётом минимальной ставки рефинансирования в размере 17%, проект «Квартира» окажется убыточным.

Расчет IRR в Excel с помощью функций и графика

IRR (Internal Rate of Return), или ВНД – показатель внутренней нормы доходности инвестиционного проекта. Часто применяется для сопоставления различных предложений по перспективе роста и доходности. Чем выше IRR, тем большие перспективы роста у данного проекта. Рассчитаем процентную ставку ВНД в Excel.

Экономический смысл показателя

Другие наименования: внутренняя норма рентабельности (прибыли, дисконта), внутренний коэффициент окупаемости (эффективности), внутренняя норма.

Коэффициент IRR показывает минимальный уровень доходности инвестиционного проекта. По-другому: это процентная ставка, при которой чистый дисконтированный доход равен нулю.

Формула для расчета показателя вручную:

  • CFt – денежный поток за определенный промежуток времени t;
  • IC – вложения в проект на этапе вступления (запуска);
  • t – временной период.

На практике нередко коэффициент IRR сравнивают со средневзвешенной стоимостью капитала:

  1. ВНД выше – следует внимательно рассмотреть данный проект.
  2. ВНД ниже – нецелесообразно вкладывать средства в развитие проекта.
  3. Показатели равны – минимально допустимый уровень (предприятие нуждается в корректировке движения денежных средств).

Часто IRR сравнивают в процентами по банковскому депозиту.

Если проценты по вкладу выше, то лучше поискать другой инвестиционный проект.

Пример расчета IRR в Excel

  • диапазон значений – ссылка на ячейки с числовыми аргументами, для которых нужно посчитать внутреннюю ставку доходности (хотя бы один денежный поток должен иметь отрицательное значение);
  • предположение – величина, которая предположительно близка к значению ВСД (аргумент необязательный; но если функция выдает ошибку, аргумент нужно задать).

Возьмем условные цифры:

Первоначальные затраты составили 150 000, поэтому это числовое значение вошло в таблицу со знаком «минус». Теперь найдем IRR. Формула расчета в Excel:

Расчеты показали, что внутренняя норма доходности инвестиционного проекта составляет 11%. Для дальнейшего анализа значение сравнивается с процентной ставкой банковского вклада, или стоимостью капитала данного проекта, или ВНД другого инвестиционного проекта.

Мы рассчитали ВНД для регулярных поступлений денежных средств. При несистематических поступлениях использовать функцию ВСД невозможно, т.к. ставка дисконтирования для каждого денежного потока будет меняться.

IRR инвестиционного проекта: формулы и примеры расчета

Решим задачу с помощью функции ЧИСТВНДОХ.

Модифицируем таблицу с исходными данными для примера:

Обязательные аргументы функции ЧИСТВНДОХ:

  • значения – денежные потоки;
  • даты – массив дат в соответствующем формате.

Формула расчета IRR для несистематических платежей:

Существенный недостаток двух предыдущих функций – нереалистичное предположение о ставке реинвестирования. Для корректного учета предположения о реинвестировании рекомендуется использовать функцию МВСД.

Аргументы:

  • значения – платежи;
  • ставка финансирования – проценты, выплачиваемые за средства в обороте;
  • ставка реинвестирования.

Предположим, что норма дисконта – 10%. Имеется возможность реинвестирования получаемых доходов по ставке 7% годовых. Рассчитаем модифицированную внутреннюю норму доходности:

Полученная норма прибыли в три раза меньше предыдущего результата. И ниже ставки финансирования. Поэтому прибыльность данного проекта сомнительна.

Графический метод расчета IRR в Excel

Значение IRR можно найти графическим способом, построив график зависимости чистой приведенной стоимости (NPV) от ставки дисконтирования. NPV – один из методов оценки инвестиционного проекта, который основывается на методологии дисконтирования денежных потоков.

Для примера возьмем проект со следующей структурой денежных потоков:

Для расчета NPV в Excel можно использовать функцию ЧПС:

Так как первый денежный поток происходил в нулевом периоде, то в массив значений он не должен войти. Первоначальную инвестицию нужно прибавить к значению, рассчитанному функцией ЧПС.

Функция дисконтировала денежные потоки 1-4 периодов по ставке 10% (0,10). При анализе нового инвестиционного проекта точно определить ставку дисконтирования и все денежные потоки невозможно. Имеет смысл посмотреть зависимость NPV от этих показателей. В частности, от стоимости капитала (ставки дисконта).

Рассчитаем NPV для разных ставок дисконтирования:

Посмотрим результаты на графике:

Напомним, что IRR – это ставка дисконтирования, при которой NPV анализируемого проекта равняется нулю. Следовательно, точка пересечения графика NPV с осью абсцисс и есть внутренняя доходность предприятия.

Внутренняя норма доходности — IRR

Определение

Внутренняя норма доходности (англ. Internal Rate of Return, IRR
), известная также как внутренняя ставка доходности, является ставкой дисконтирования, при которой чистая приведенная стоимость (англ. Net Present Value, NPV
) проекта равна нолю. Другими словами, настоящая стоимость всех ожидаемых денежных потоков проекта равна величине первоначальных инвестиций. В основе метода IRR лежит методика дисконтированных денежных потоков, а сам показатель получил широкое использование в бюджетировании капитальных вложений и при принятии инвестиционных решений в качестве критерия отбора проектов и инвестиций.

Формула IRR

Критерий отбора проектов

Правило принятия решений при отборе проектов можно сформулировать следующим образом:

  1. Внутренняя норма доходности должна превышать средневзвешенную стоимость капитала (англ. Weighted Average Cost of Capital, WACC
    ), привлеченного для реализации проекта, в противном случае его следует отклонить.
  2. Если несколько независимых проектов соответствуют указанному выше критерию, все они должны быть приняты. Если они являются взаимоисключающими, то принять следует тот из них, у которого наблюдается максимальный IRR.

Пример расчета внутренней нормы доходности

Предположим, что существует два проекта с одинаковым уровнем риска, первоначальными инвестициями и общей суммой ожидаемых денежных потоков. Для более наглядной иллюстрации концепции стоимости денег во времени, поступление денежных потоков по Проекту А ожидается несколько раньше, чем по Проекту Б.

Подставим представленные в таблице данные в уравнение.

Для решения этих уравнений можно воспользоваться функцией «ВСД» Microsoft Excel, как это показано на рисунке ниже.

  1. Выберите ячейку вывода I4
    .
  2. Нажмите кнопку fx
    , выберите категорию «Финансовые
    », а затем функцию «ВСД
    » из списка.
  3. В поле «Значение
    » выберите диапазон данных C4:H4
    , оставьте пустым поле «Предположение
    » и нажмите кнопку OK
    .

Таким образом, внутренняя ставка доходности Проекта А составляет 20,27%, а Проекта Б 12,01%. Схема дисконтированных денежных потоков представлена на рисунке ниже.

Предположим, что средневзвешенная стоимость капитала для обеих проектов составляет 9,5% (поскольку они обладают одним уровнем риска). Если они являются независимыми, то их следует принять, поскольку IRR выше WACC. Если бы они являлись взаимоисключающими, то принять следует Проект А из-за более высокого значения IRR.

Преимущества и недостатки метода IRR

Использование метода внутренней нормы доходности имеет три существенных недостатка.

  1. Предположение, что все положительные чистые денежные потоки будут реинвестированы по ставке IRR проекта. В действительности такой сценарий маловероятен, особенно для проектов с ее высокими значениями.
  2. Если хотя бы одно из значений ожидаемых чистых денежных потоков будет отрицательным, приведенное выше уравнение может иметь несколько корней. Эта ситуация известна как проблема множественности IRR.
  3. Конфликт между методами NPV и IRR может возникнуть при оценке взаимоисключающих проектов.

    Внутренняя норма доходности (IRR). Формула и пример расчета в Excel

    В этом случае у одного проекта будет более высокая чистая приведенная стоимость, но более низкая внутренняя норма доходности, а у другого наоборот. В такой ситуации следует отдавать предпочтение проекту с более высокой чистой приведенной стоимостью.

Рассмотрим конфликт NPV и IRR на следующем примере.

Для каждого проекта была рассчитана чистая приведенная стоимость для диапазона ставок дисконтирования от 1% до 30%. На основании полученных значений NPV построен следующий график.

При стоимости капитала от 1% до 13,092% реализация Проекта А является более предпочтительной, поскольку его чистая приведенная стоимость выше, чем у Проекта Б. Стоимость капитала 13,092% является точкой безразличия, поскольку оба проекта обладают одинаковой чистой приведенной стоимостью. При стоимости капитала более 13,092% предпочтительной уже является реализация Проекта Б.

С точки зрения IRR, как единственного критерия отбора, Проект Б является более предпочтительным. Однако, как можно убедиться на графике, такой вывод является ложным при стоимости капитала менее 13,092%. Таким образом, внутреннюю норму доходности целесообразно использовать в качестве дополнительного критерия отбора при оценке нескольких взаимоисключающих проектов.

Вернуться на методику инвестиционный анализ

Внутренняя норма доходности IRR

Внутренняя норма доходности — норма прибыли, порожденная инвестицией. Это та норма прибыли (барьерная ставка, ставка дисконтирования)
, при которой чистая текущая стоимость инвестиции равна нулю, или это та ставка дисконта, при которой дисконтированные доходы от проекта равны инвестиционным затратам. Внутренняя норма доходности определяет максимально приемлемую ставку дисконта, при которой можно инвестировать средства без каких-либо потерь для собственника.

IRR = r, при котором NPV = f(r) = 0,

Ее значение находят из следующего уравнения:

NPV(IRR) — чистая текущая стоимость, рассчитанная по ставке IRR,
CFt — приток денежных средств в период t;
It — сумма инвестиций (затраты) в t-ом периоде;
n — суммарное число периодов (интервалов, шагов) t = 0, 1, 2, …, n.

Определяется: как норма прибыли, при которой чистая текущая стоимость инвестиции равна нулю.

Характеризует: наименее точно, эффективность инвестиции, в относительных значениях.

Синонимы: внутренняя норма прибыли, внутренний коэффициент окупаемости, Internal Rate of Return.

Акроним:IRR

Недостатки: не учитывается уровень реинвестиций, не показывает результат инвестиции в абсолютном значении, при знакопеременных потоках может быть рассчитан неправильно.

Критерий приемлемости: IRR > R бар ef (чем больше, тем лучше)

Условия сравнения: любой срок действия инвестиции и размер.

Экономический смысл данного показателя заключается в том, что он показывает ожидаемую норму доходности (рентабельность инвестиций) или максимально допустимый уровень инвестиционных затрат в оцениваемый проект. IRR должен быть выше средневзвешенной цены инвестиционных ресурсов:

IRR > Rбар eff (CC)

Если это условие выдерживается, инвестор может принять проект, в противном случае он должен быть отклонен.

Достоинства показателя внутренняя норма доходности (IRR) состоят в том, что кроме определения уровня рентабельности инвестиции, есть возможность сравнить проекты разного масштаба и различной длительности.

Показатель эффективности инвестиций внутренняя норма доходности (IRR) имеет три основных недостатка.

Во-первых, по умолчанию предполагается, что положительные денежные потоки реинвестируются по ставке, равной внутренней норме доходности.

Внутренняя норма доходности

В случае, если IRR близко к уровню реинвестиций фирмы, то этой проблемы не возникает; когда IRR, особенно привлекательного инвестиционного проекта равен, к примеру 80%, то имеется в виду, что все денежные поступления должны реинвестироваться при ставке 80%. Однако маловероятно, что предприятие обладает ежегодными инвестиционными возможностями, которые обеспечивают рентабельность в 80%. В данной ситуации показатель внутренней нормы доходности (IRR) завышает эффект от инвестиций (в показателе MIRR модифицированная внутренняя норма доходности данная проблема устранена).

Во-вторых, нет возможности определить, сколько принесет денег инвестиция в абсолютных значениях (рублях, долларах).

В-третьих, в ситуации со знакопеременными денежными потоками может рассчитываться несколько значений IRR или возможно определение неправильного значения (в программе «Альтаир Инвестиционный анализ 1.хх» эта проблема устранена программным способом, будет и в «Альтаир Инвестиционный анализ 2.01).

Пример №1. Расчет внутренней нормы доходности
при постоянной барьерной ставке.
Размер инвестиции — 115000$.
Доходы от инвестиций в первом году: 32000$;
во втором году: 41000$;
в третьем году: 43750$;
в четвертом году: 38250$.
Размер эффективной барьерной ставки — 9,2%.

Решим задачу без использования специальных программ. Используем метод последовательного приближения. Подбираем барьерные ставки так, чтобы найти минимальные значения NPV по модулю, и затем проводим аппроксимацию. Стандартный метод — не устраняется проблема множественного определения IRR и существует возможность неправильного расчета (при знакопеременных денежных потоках). Для устранения проблемы обычно строится график NPV(r)).

Рассчитаем для барьерной ставки равной ra=10,0%
PV1 = 32000 / (1 + 0,1) = 29090,91$
PV2 = 41000 / (1 + 0,1)2 = 33884,30$
PV3 = 43750 / (1 + 0,1)3 = 32870,02$
PV4 = 38250 / (1 + 0,1)4 = 26125,27$

NPV(10,0%) = (29090,91 + 33884,30 + 32870,02 + 26125,27) — 115000 =
= 121970,49 — 115000 = 6970,49$

Рассчитаем для барьерной ставки равной rb=15,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 32000 / (1 + 0,15)1 = 27826,09$
PV2 = 41000 / (1 + 0,15)2 = 31001,89$
PV3 = 43750 / (1 + 0,15)3 = 28766,34$
PV4 = 38250 / (1 + 0,15)4 = 21869,56$

NPV(15,0%) = (27826,09 + 31001,89 + 28766,34 + 21869,56) — 115000 = 109463,88 — 115000 = — 5536,11$

Делаем предположение, что на участке от точки а до точки б функция NPV(r) прямолинейна, и используем формулу для аппроксимации на участке прямой:

IRR = ra + (rb — ra) * NPVa /(NPVa — NPVb) = 10 + (15 — 10)*6970,49 / (6970,49 — (- 5536,11)) = 12,7867%

Формула справедлива, если выполняются условия ra < IRR 0 > NPVb.

Ответ: внутренний коэффициент окупаемости равен 12,7867%, что превышает эффективную барьерную ставку 9,2%, следовательно, проект принимается.

Пример №2. IRR при переменной барьерной ставке.

Размер инвестиции — $12800.
во втором году: $5185;
в третьем году: $6270.
Размер барьерной ставки — 11,4% в первом году;
10,7% во втором году;
9,5% в третьем году.
Определите приемлемость проекта по параметру IRR.

Рассчитаем для ставки дисконтирования равной ra=20,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 7360 / (1 + 0,2) = $6133,33
PV2 = 5185 / (1 + 0,2)^2 = $3600,69
PV3 = 6270 / (1 + 0,2)^3 = $3628,47

NPV(20,0%) = (6133,33 + 3600,69 + 3628,47) — 12800 = 13362,49 — 12800 = $562,49

Рассчитаем для ставки дисконтирования равной rb = 25,0%

Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 7360 / (1 + 0,25) = $5888,00
PV2 = 5185 / (1 + 0,25)^2 = $3318,40
PV3 = 6270 / (1 + 0,25)^3 = $3210,24

NPV(25,0%) = (5888,00 + 3318,40 + 3210,24) — 12800 = 12416,64 — 12800 = -383,36

IRR = 20 + (25 — 20)*562,49 / (562,49 — (- 383,36)) = 22,9734%.

Т.к. барьерная ставка переменная, то сравнение производим с эффективной барьерной ставкой.
В соответствии с расчетом примера эффективная барьерная ставка равна 10,895%.

Ответ: внутренний коэффициент окупаемости равен 22,9734%, превышает 10,895%, следовательно, проект принимается.

Правило, согласно которому, из двух проектов, выбирается проект с большим IRR действует не всегда. После учета уровня реинвестиций (пример №3) или барьерной ставки (пример №4) проект с меньшим IRR, может быть выгоднее проекта с большим IRR.

Пример №3.
Исключение из правила: выбор проекта с большим значением IRR, влияние уровня реинвестиций барьерной ставки.
Барьерная ставка равна 12%.
Уровень реинвестиций постоянный и равен 10%.
Первый проект генерирует прибыль равную 200 рублей по окончании 1 года и 100 рублей по окончании второго года, а второй генерирует прибыль равную 160 рублей в течении первых 3 лет и затем по 60 рублей еще 4 года.
Сравните два проекта.

Рассчитаем значения параметров IRR и MIRR для каждого из проектов:
IRR1 = 141,42%.
IRR2 = 153,79%.
MIRR1 = 73,205%.
MIRR2 = 40,0%.
Но при этом годовая доходность, рассчитанная по модели MIRR будет у первого проекта равна 73,205%., а у второго всего лишь 40,0%, несмотря на больший IRR. Т.к. расчет по модели MIRR точнее чем IRR то примут первый инвестиционный проект (если рассматривать только с точки зрения финансовой эффективности).

Пример №4. Исключение из правила:
выбор проекта с большим значением IRR, влияние барьерной ставки.
Стоимость инвестиции для обоих проектов равна 100 рублям.
Барьерная ставка равна 25%.
Первый проект генерирует прибыль равную 160 рублей по окончании 1 года, а второй генерирует прибыль равную 80 рублей в течении 7 лет.
Сравните два проекта.

IRR1 = 60,0%.
IRR2 = 78,63%.
Т.к. срок действия инвестиционных проектов существенно различается, то сравнивать по параметру DPI не представляется возможным; сравниваем по MIRR(бар) и с NRR в годовых значениях.
MIRR(бар)1 = 60,0%
MIRR(бар)2 = 42,71%
Чистая доходность NRR1, годовых = 28%.
Чистая доходность NRR2, годовых = 21,84%.

Показатели MIRR(бар) и NRR, % годовых больше у первого проекта, несмотря на меньший IRR.

Пример №5. Анализ чувствительности
.
Размер инвестиции — $12800.
Доходы от инвестиций в первом году: $7360;
во втором году: $5185;
в третьем году: $6270.
Определите, как повлияет на значение внутренней нормы доходности увеличение прибыли от инвестиции на 23,6%.

Исходная внутренняя норма доходности была рассчитана в примере №2 и равна IRRисх = 22,97%.
Определим значение денежных потоков с учетом увеличения их на 23,6%.
CF1 ач = 7360 * (1 + 0,236) = $9096,96
CF2 ач = 5185 * (1 + 0,236) = $6408,66
CF3 ач = 6270 * (1 + 0,236) = $7749,72

Рассчитаем для ставки дисконтирования равной ra = 30,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 ач = 9096,96 / (1 + 0,3)1 = $6997,661
PV2 ач = 6408,66 / (1 + 0,3)2 = $3792,106
PV3 ач = 7749,72 / (1 + 0,3)3 = $3527,410
NPVач(30,0%) = (6997,661 + 3792,106 + 3527,410) — 12800 = 13 593,118 — 12800 = $793,1180

Рассчитаем для ставки дисконтирования равной rb = 40,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 ач = 9096,96 / (1 + 0,4)1 = $6497,828
PV2 ач = 6408,66 / (1 + 0,4)2 = $3269,724
PV3 ач = 7749,72 / (1 + 0,4)3 = $2824,242
NPVач(40,0%) = (6497,828 + 3269,724 + 2824,242) — 12800 = 12 591,794 — 12800 = — $208,206

IRRач = 30 + (40 — 30) * 793,118 / (793,118 — (- 208,206)) = 37,92%.

Определим изменение внутренней нормы доходности: (IRRач — IRRисх) / IRRисх * 100% = (37,92 — 23,6)/23,6*100% = 60,68%.

Ответ. Увеличение размера доходов на 23,6% привело к увеличению внутренней нормы доходности на 60,68%.

Примечание. Дисконтирование денежных потоков при меняющейся во времени барьерной ставке (норме дисконта) соответствует «Методическим указаниям № ВК 477 …» п.6.11 (стр. 140).

Внутренняя норма рентабельности (IRR)

Внутренняя норма рентабельности (Internal Rate of Return, IRR)
— это ставка дисконтирования, при которой Чистый дисконтированный доход(NPV) равен нулю (т.е. суммарные доходы равны суммарным инвестициям).

Расчет внутренней нормы доходности

Другими словами это показатель отражает безубыточную норму рентабельности
проекта.

Пример графического расчета показателя IRR

3. График изменения уровня доходности в зависимости от ставки дисконтирования

На основе рассчитанных значений NPV при ставке дисконтировании 12 % и 18 % годовых, строится график. Особенно точным будет результат, если график строить на основе данных с положительными и отрицательными значениями.

Пример математического расчета показателя IRR

Пусть наш проект рассчитан на 1 год. Первоначальные инвестиции = 100 тыс. руб. Чистый доход за год = 120 тыс. руб. Рассчитаем IRR.

120/(1+
IRR
)
1
– 100 = 0

120/(1+
IRR
)
1
= 100 {умножим обе части уравнения на (1+
IRR
)
1
}

120 = 100 (1+
IRR
)
1

120 = 100 + 100
IRR

20 = 100
IRR

IRR = 20
/100 = 0,2 или 20%

Или можно использовать формулу:

,

где r1-значение выбранной ставки дисконтирования, при которой NPVi>0; r2 — значение выбранной ставки дисконтирования, при которой NPV2<0.

АНАЛИЗ РЕЗУЛЬТАТОВ

1) Если кто-то инвестирует в нас

R
< IRR

Если ставка дисконтирования ниже внутренней нормы рентабельности IRR, то вложенный в проект капитал принесет положительное значение NPV, следовательно, проект можно принять.

R
= IRR

Если ставка дисконтирования равна внутренней нормы рентабельности IRR, то проект не принесет ни прибыль и не убытки, следовательно, проект нужно отклонить.

R
> IRR

Если ставка дисконтирования выше внутренней нормы рентабельности IRR, то вложенный капитал в проект принесет отрицательное значение NPV, следовательно, проект нужно отклонить.

Таким образом, если проект полностью финансируется за счет ссуды коммерческого банка (банк инвестирует в нас), то значение IRR
показывает верхнюю границу допустимого уровня банковской процентной ставки, превышение которого делает проект убыточным.

Например: если рассчитанная для нашего проекта IRR = 12%, то ссуду мы будем брать только в том банке, у которого ставка = 9, 10 или 11%.

2) Если инвестируем мы (вкладываем в собственный бизнес, в банк или кредитуем другую организацию)

Стоит принять тот проект, у которого IRR выше, т.е. IRR
->
max
.

По сути, теперь мы встали на место банка. Чем выше IRR в каком-либо проекте, тем большую ставку дисконтирования (R
) мы можем использовать и тем больший доход от вложения наших средств получим.

Доходность инвестиционного проекта является главным условием в процессе инвестирования. Она определяется статическими и динамическими показателями, абсолютными и относительными.

Абсолютные показатели сообщают инвестору, сколько он может заработать, вложив деньги в проект, а относительные показатели сообщают ему об отдаче каждого рубля его вложений.

Среди относительных показателей большую информативность имеет показатель внутренняя норма доходности инвестиционного проекта, который показывает среднюю норму доходности инвестиций за весь их жизненный цикл. Одновременно этот показатель говорит инвестору о границе доходности инвестиций, ниже которых не целесообразно инвестировать. Кроме этого, он может служить для выбора лучшего инвестиционного проекта, среди равных проектов, по другим показателям.

В математическом выражении, IRR инвестиционного проекта есть та норма доходности проекта, при которой NPV = 0, то есть затраты равны результатам. В этом случае инвестор ничего не теряет, но ничего и не выигрывает от вложений. Та процентная ставка, при которой это происходит, может служить допустимой ставкой дисконтирования денежных потоков при расчете показателей экономической эффективности инвестиционных проектов. При такой ставке соблюдается уравнение:

IRR — внутренняя норма доходности инвестиционного проекта.

Инвестиционный выбор среди вариантов инвестированиябудет принадлежать варианту с большей внутренней нормой доходности. А при оценке целесообразности инвестирования в единичный проект внутренняя норма доходности должна превышать средневзвешенную стоимость инвестиционных ресурсов. То есть, любые инвестиционные решения при норме доходности ниже IRR должны отвергаться инвестором.

Данный показатель имеет вид нелинейной функции и определяется двумя способами: графическим и методом итераций. Метод итераций, это подбор варианта нормы доходности, при которой инвестиционный капитал равен инвестиционным доходам. Математический алгоритм расчета показателя достаточно прост и компьютер легко справляется с этой задачей. А графический метод дает наглядность расчета внутренней нормы доходности. Для этого строится график NPV(r).

На вышеприведенном рисунке по оси абсцисс откладывается величины NPV, а по оси ординат норма доходности. Выбираем две точки около пересечения кривой с осью ординат. Принимаем, что на этом участке изменения параметров носят линейный характер. Тогда можно рассчитать IRR следующим образом:

Пример графического расчета IRR

Инвестиции в проект составили 115 млн. рублей.

  • 1-й год работы принес чистый доход 32 млн. рублей;
  • 2-й год — 41 млн. рублей;
  • 3-й год — 44 млн. рублей;
  • 4-й год — 38 млн. рублей.

Выбираем у точки пересечения функции NPV(r) ось ординат положения точеки ra и rb. ra=10%, а rb=15%.Далее определим NPV для каждой из обозначенных точек:

Если совокупная стоимость капитала равна 11%, проект достоин рассмотрения инвестором.

Расчет упрощается при использовании табулированных значений дисконтируемых множителей, публикуемых в интернете, обычно с шагом в 1%. С их помощью также рассчитывают NPVaи NPVb с шагом в 1% и определяется IRR.

Если инвестиции вкладываются в инвестируемый объект с условием реинвестирования прибыли, то если имеет высокий уровень или существенно отличается от стоимости капитала инвестируемого объекта, реинвестирование по норме сильно исказит реальную картину.

Расчет модифицированной внутренней нормы доходности

Данная ситуация регулируется введением показателя: модифицированная норма доходности инвестиций MIRR. При расчете данного показателя реинвестирование осуществляется по ставке дисконтирования, ориентированной на совокупную стоимость капитала именуемой чистой терминальной стоимостью NTV (Net Terminal Value), а исходящие денежные потоки дисконтируются по ставке IRR.

Все очень логично — реинвестиции это те же инвестиции, поэтому они, как и инвестиции, дисконтируются по совокупной стоимости капитала инвестируемого объекта, ставке дисконтирования r.

Поэтому формула расчета модифицированной нормы доходности инвестиций приобретает следующий вид:

  • d — средневзвешенная стоимость капитала;
  • r — ставка дисконтирования;
  • CFt — денежные притоки в t-ый год жизни проекта;
  • ICt — инвестиционные денежные потоки в t-ый год жизни проекта;
  • n — срок жизненного цикла проекта.

Оценка проектов по вышеназванным показателям дает возможность их сопоставления вне зависимости от размеров инвестиций, масштабов самих проектов, сроков реализации инвестиционных проектов.

То есть для всех инвестиций при превышении IRR и MIRR средневзвешенной стоимости капитала они признаются эффективными, хотя необходима обязательно абсолютная оценка их доходности. А при сравнении инвестиционных проектов между собой, выбирается вариант с наибольшими значениями этих показателей.

Модифицированная норма доходности, как и внутренняя норма доходности инвестируемого капитала, имеет один существенный недостаток. Она не дает реальной картины при поступающих знакопеременных денежных потоках. Такая ситуация довольно часто возникает при инвестировании в несколько временных периодов.

Трудности расчета этого показателя возникают и при изменении ставки рефинансирования проекта во времени. Расчет показателя возможен, но методически и технически затруднителен.

Внутренняя норма доходности (англ. Internal Rate of Return, IRR
), известная также как внутренняя ставка доходности, является ставкой дисконтирования, при которой чистая приведенная стоимость (англ. Net Present Value, NPV
) проекта равна нолю. Другими словами, настоящая стоимость всех ожидаемых денежных потоков проекта равна величине первоначальных инвестиций. В основе метода IRR лежит методика дисконтированных денежных потоков, а сам показатель получил широкое использование в бюджетировании капитальных вложений и при принятии инвестиционных решений в качестве критерия отбора проектов и инвестиций.

Критерий отбора проектов

Правило принятия решений при отборе проектов можно сформулировать следующим образом:

  1. Внутренняя норма доходности должна превышать средневзвешенную стоимость капитала (англ. Weighted Average Cost of Capital, WACC
    ), привлеченного для реализации проекта, в противном случае его следует отклонить.
  2. Если несколько независимых проектов соответствуют указанному выше критерию, все они должны быть приняты. Если они являются взаимоисключающими, то принять следует тот из них, у которого наблюдается максимальный IRR.

Предположим, что существует два проекта с одинаковым уровнем риска, первоначальными инвестициями и общей суммой ожидаемых денежных потоков. Для более наглядной иллюстрации концепции стоимости денег во времени, поступление денежных потоков по Проекту А ожидается несколько раньше, чем по Проекту Б.

Подставим представленные в таблице данные в уравнение.

Для решения этих уравнений можно воспользоваться функцией «ВСД» Microsoft Excel, как это показано на рисунке ниже.

  1. Выберите ячейку вывода I4
    .
  2. Нажмите кнопку fx
    , выберите категорию «Финансовые
    », а затем функцию «ВСД
    » из списка.
  3. В поле «Значение
    » выберите диапазон данных C4:H4
    , оставьте пустым поле «Предположение
    » и нажмите кнопку OK
    .

Таким образом, внутренняя ставка доходности Проекта А составляет 20,27%, а Проекта Б 12,01%. Схема дисконтированных денежных потоков представлена на рисунке ниже.

Предположим, что средневзвешенная стоимость капитала для обеих проектов составляет 9,5% (поскольку они обладают одним уровнем риска). Если они являются независимыми, то их следует принять, поскольку IRR выше WACC. Если бы они являлись взаимоисключающими, то принять следует Проект А из-за более высокого значения IRR.

Преимущества и недостатки метода IRR

Использование метода внутренней нормы доходности имеет три существенных недостатка.

  1. Предположение, что все положительные чистые денежные потоки будут реинвестированы по ставке IRR проекта. В действительности такой сценарий маловероятен, особенно для проектов с ее высокими значениями.
  2. Если хотя бы одно из значений ожидаемых чистых денежных потоков будет отрицательным, приведенное выше уравнение может иметь несколько корней. Эта ситуация известна как проблема множественности IRR.
  3. Конфликт между методами NPV и IRR может возникнуть при оценке взаимоисключающих проектов. В этом случае у одного проекта будет более высокая чистая приведенная стоимость, но более низкая внутренняя норма доходности, а у другого наоборот. В такой ситуации следует отдавать предпочтение проекту с более высокой чистой приведенной стоимостью.

Рассмотрим конфликт NPV и IRR на следующем примере.

Для каждого проекта была рассчитана чистая приведенная стоимость для диапазона ставок дисконтирования от 1% до 30%. На основании полученных значений NPV построен следующий график.

При стоимости капитала от 1% до 13,092% реализация Проекта А является более предпочтительной, поскольку его чистая приведенная стоимость выше, чем у Проекта Б. Стоимость капитала 13,092% является точкой безразличия, поскольку оба проекта обладают одинаковой чистой приведенной стоимостью. При стоимости капитала более 13,092% предпочтительной уже является реализация Проекта Б.

С точки зрения IRR, как единственного критерия отбора, Проект Б является более предпочтительным. Однако, как можно убедиться на графике, такой вывод является ложным при стоимости капитала менее 13,092%. Таким образом, внутреннюю норму доходности целесообразно использовать в качестве дополнительного критерия отбора при оценке нескольких взаимоисключающих проектов.

IRR – это внутренняя норма доходности. Показатель используют для выбора наиболее эффективного из двух инвестиционных проектов. Расскажем, как рассчитать и анализировать показатель. А также приведем эксклюзивный отчет, который поможет быстро сравнить эффективность нескольких проектов.

Что такое IRR простыми словами

IRR – это внутренняя норма доходности инвестиционного проекта. Проще говоря, IRR показывает, какое максимальное требование к годовому доходу на вложенные деньги инвестор может закладывать в свои расчеты, чтобы проект выглядел привлекательным.

IRR позволяет оценить максимальную стоимость капитала, при которой проект остается эффективным, то есть пороговую ставку, от которой он уходит в минус. Такая ставка должна обнулять чистый дисконтированный доход .

На практике этот показатель называют запасом прочности инвестиционного проекта, так как разрыв между ВНД и стоимостью капитала показывает, насколько большую ставку кредита (или другого вида фондирования) способен выдержать проект. Если величина показателя проекта больше стоимости капитала для компании (т. е. ), то его следует принять.

Скачайте и возьмите в работу
:

Чем поможет
: сравнить эффективность нескольких инвестиционных проектов. Документ содержит основные показатели – норму прибыли, внутреннюю норму доходности.

Как считать IRR инвестиционного проекта

Собственной формулы расчета у IRR нет, показатель вычисляется методом итеративного подбора из уравнения NPV=0, которое записывается следующим образом:

CF t – значение денежного потока в период t.

N – период расчета проекта.

Как рассчитать IRR в Excel

Без MS Excel задача может быть решена примерно с использованием графического метода или математического расчета, которые мы рассмотрим далее.

Как избежать ошибок при расчете IRR в Excel

Если нужно быстро определить чистый дисконтированный доход инвестиционного проекта, воспользуйтесь рекомендациями «Системы Финансовый директор». Оно поможет разобраться, как лучше рассчитать этот показатель в Excel, какой формулой воспользоваться и как безошибочно вычислить эффективность предстоящих инвестиций.

Как определить показатель графическим методом

Для определения внутренней нормы доходности строим систему координат (рис. 1.), где по оси ординат значение функции – NPV, а по оси абсцисс –
.

Рисунок 1


Подбираем две ставки дисконтирования так чтобы при одной ставке (в точке «А») значение NPV было положительным, при другой – в точке «Б» – отрицательным, при этом чем ближе значение NPV приближается к нулю снизу и сверху, тем точнее будет решение. Соединим две точки на графике отрезком – точка пересечения отрезка с осью абсцисс и есть ставка внутренней нормы доходности. В нашем примере, если у нас в точке «А» ставка дисконтирования – 11%, а в «Б» – 12%, то в точке пересечения оси абсцисс ставка примерно (на глаз) равна 11,6%. Это не точный метод, но он дает представление о значении внутренней нормы доходности.

Расчет IRR с помощью ставки дисконтирования

IRR = r1 + NPV1 х (r2 – r1) / (NPV1 – NPV2),

где r1 – ставка дисконтирования, определенная методом подбора, которой соответствует положительное рассчитанное значение NPV1,

r2 – ставка дисконтирования, определенная методом подбора, которой соответствует отрицательное рассчитанное значение NPV2.

В нашем примере r1 = 11%, r2 = 12%. Предположим что NPV1 = 120, NPV2 = -90, тогда:

IRR = 11% + 120 х (12%-11%) / (120- (-90)) = 0,11 + 120 х (0,01) / 210 = 0,11 + 0,0057 = 0,1157 или 11,57%.

Недостатки расчета IRR

У расчета IRR есть недостатки, которые надо учитывать. Так, показателя не существует, если не происходит смены знака значения NPV. Это значит, что если проект сразу приносит прибыль, не уходя в минус на инвестиционной фазе, у такого проекта не будет IRR. Ситуация редкая, но вполне вероятная, например если выбран интервал расчета – год, а отрицательный денежный поток имеет место только в первые месяцы, а по итогам года проект в плюсе. На графической иллюстрации расчета мы увидим, траекторию изменения NPV никогда не пересекающую ось абсцисс при любом значении ставки дисконтирования.

Еде один важный момент. Показатель, рассчитанный по нашей формуле, может принимать фантастически большие значения. Такой вариант тоже возможен, например, если размер первоначальных инвестиций не велик, а NPV быстро возрастает.

Возможно, что существует несколько значений IRR, это ситуация когда бизнес-модель приводит к многократным переходами через ноль (сменам знака) показателем NPV в разные периоды времени, например если проект этапный и требует крупных вливаний, превышающих накопленные за время реализации проекта средства. В этом случае внутренняя норма доходности не имеет смысла.

Главный недостаток – формула предполагает в своей конструкции, что положительные денежные потоки реинвестируются в проект по ставке внутренней нормы доходности0

Где CF + – входящие денежные потоки проекта i-го периода,

CF — – исходящие денежные потоки проекта i-го периода,

WACC – средневзвешенная стоимость капитала (нормативная доходность),

r – ставка дисконтирования,

N – длительность проекта.

К исходящим потокам применяется дисконтирование, которое осуществляют по цене источника финансирования проекта. К денежным притокам применяют наращение – приводят стоимость потока к моменту завершения проекта. Наращение осуществляется по процентной ставке равной уровню реинвестиций.

MIRR решает и проблему множественности IRR, и неадекватной оценки реинвестируемых потоков.

Во встроенный инструментарий MS Excel входит функция МВСД () для расчета MIRR.

Если MIRR больше чем ставка дисконтирования – r, проект эффективен и должен быть реализован.

ВИДЕО. Как рассчитать внутреннюю норму доходности

О том, как рассчитать IRR, что учесть при расчете и как избежать ошибок, на видео рассказывает Бенедикт Вагнер, генеральный директор «Wagner & Experts», преподаватель . Это часть , который можно пройти онлайн, без отрыва от работы. И получить по итогам обучения сертификат о повышении квалификации гос. образца.

Выводы

IRR – это относительный показатель эффективности проекта. Его основная задача – предоставить менеджменту оценку максимальной стоимости источников финансирования проекта, при которых он не убыточен.

Но стоит использовать IRR, как самостоятельный и единственный показатель эффективности инвестиций. При этом он относится к списку показателей «must have» в инвестиционном анализе – для всех аналитиков, финансовых директоров и менеджеров.

Внутренняя норма рентабельности (IRR)

Под внутренней нормой рентабельности,
или внутренней нормой прибыли
(IRR)
инвестиций понимают значение ставки дисконтирования, при котором NPV
проекта равна нулю:

IRR
= i
, при котором NPV
= f
(i
) = 0.

Смысл расчета этого коэффициента при анализе эффективности планируемых инвестиций заключается в следующем. IRR
показывает максимально допустимый относительный уровень расходов, которые могут быть ассоциированы с данным проектом. Например, если проект полностью финансируется за счет ссуды коммерческого банка, то значение IRR
показывает верхнюю границу допустимого уровня банковской процентной ставки, превышение которого делает проект убыточным.

На практике любое предприятие финансирует свою деятельность из различных источников. В качестве платы за пользование авансированными в деятельность предприятия финансовыми ресурсами оно уплачивает проценты, дивиденды, вознаграждения, т.е. несет некоторые обоснованные расходы на поддержание своего экономического потенциала. Показатель, характеризующий относительный уровень этих доходов, можно назвать ценой (привлечения) капитала
(capital cost, СС).
Этот показатель отражает сложившийся на предприятии минимум возврата на вложенный в его деятельность капитал, его рентабельность и рассчитывается по формуле средней арифметической взвешенной.

Экономический смысл этого показателя заключается в следующем: предприятие может принимать любые решения инвестиционного характера, уровень рентабельности которых не ниже текущего значения показателя СС (цены капитала для данного проекта).
Именно с ним сравнивается показатель IRR,
рассчитанный для конкретного проекта, при этом связь между ними такова:

  • если IRR > СС,
    то проект следует принять;
  • если IRR то проект следует отвергнуть;
  • если IRR = СС,
    то проект ни прибыльный, ни убыточный.

Еще один вариант интерпретации состоит в трактовке внутренней нормы прибыли как возможной нормы дисконта, при которой проект еще выгоден по критерию NPV.
Решение принимается на основе сравнения IRR
с нормативной рентабельностью; при этом чем выше значения внутренней нормы доходности и больше разница между ее значением и выбранной ставкой дисконта, тем больший запас прочности имеет проект.
Данный критерий является основным ориентиром при принятии инвестиционного решения инвестором, что вовсе не умаляет роли других критериев. Для расчета IRR
с помощью таблиц дисконтирования выбираются два значения коэффициента дисконтирования таким образом, чтобы в интервале () функция меняла свое значение с «+» на «–» или с «–» на «+». Далее применяют формулу:

(5.2)

где – значение коэффициента дисконтирования, при котором ; – значение коэффициента дисконтирования, при котором .

Точность вычислений обратно пропорциональна длине интервала (), а наилучшая аппроксимация достигается в случае, когдаи– ближайшие друг к другу значения коэффициента дисконтирования, удовлетворяющие сформулированным выше условиям.

Точный расчет величины IRR
возможен только при помощи компьютера.

Пример

Требуется определить значение показателя IRR
для проекта, рассчитанного на три года, требующего инвестиций в размере 2000 ден. ед. и имеющего предполагаемые денежные поступления в размере 1000, 1500 и 2000 ден. ед.

Для расчета IRR
с помощью таблиц дисконтирования выбираем два произвольных коэффициента дисконтирования, например, и рассчитываем значение функции NPV =
Получаем NPV
=f
(40%) = 207 и NPV
= f
(50%) = -75. Таким образом, функция NPV
=f
(i
) меняет свое значение с «+» на «-«, и данный интервал значений нас устраивает для расчета IRR
(конечно, не всегда сразу удается подобрать такой интервал, иногда необходимо провести несколько итераций).

Далее, таким же образом мы можем уточнить полученное значение IRR
путем нескольких итераций, определив ближайшие целые значения коэффициента дисконтирования, при которых NPV
меняет знак. Для нашего примера такими целыми значениями являются значения .

Таким образом, искомое значение IRR
составляет, по нашим расчетам, 47,17%. (Значение IRR,
полученное с помощью финансового калькулятора, составляет 47,15%).

Основные расчеты представлены в табл. 5.5.

Таблица 5.5.
Расчеты к примеру

Инвестиции

К достоинствам этого критерия можно отнести объективность, независимость от абсолютного размера инвестиций, информативность. Кроме того, он легко может быть приспособлен для сравнения проектов с различными уровнями риска: проекты с большим уровнем риска должны иметь большую внутреннюю норму доходности. Однако у него есть и недостатки: сложность бескомпьютерных расчетов, большая зависимость от точности оценки будущих денежных потоков, а также невозможность использования в случае наличия нескольких корней уравнения.

Для определения внутренней нормы рентабельности, как и в методе чистой текущей стоимости, необходимо наличие допущений, которые в значительной степени совпадают друг с другом у обоих методов. Исключением является допущение относительно вложения высвобождающихся финансовых средств (условие реинвестирования), а также относительно различий в затратах капитала и сроке эксплуатации. Соответствующее допущение метода определения внутренней ставки (вложение по внутренней процентной ставке), как правило, не представляется целесообразным. Поэтому метод определения внутренней нормы рентабельности без учета конкретных резервных инвестиций или другой модификации условий не следует применять для оценки абсолютной выгодности, если имеют место комплексные инвестиции и тем самым происходит процесс реинвестирования. При этом типе инвестиций возникает также проблема существования нескольких корней при решении исходного уравнения. В этих случаях могут возникнуть сложности интерпретации результатов метода определения внутренней нормы рентабельности.

Метод определения внутренней нормы рентабельности для оценки относительной выгодности не следует применять, как отмечено выше, путем сравнения внутренних процентных ставок отдельных объектов. Вместо этого необходимо проанализировать инвестиции для определения разницы. В случае изолированно осуществляемых инвестиций можно сравнить внутреннюю процентную ставку с расчетной, чтобы сделать возможным сравнение выгодности. Если инвестиции для сравнения выгодности имеют комплексный характер, то применение метода определения рентабельности является нецелесообразным.

Преимущество метода внутренней нормы рентабельности в сравнении с методом чистой текущей стоимости заключается в возможности его интерпретирования. IRR
характеризует начисление процентов на затраченный капитал (рентабельность затраченного капитала).

Кроме этого, внутреннюю процентную ставку можно рассматривать в качестве критической процентной ставки для определения абсолютной выгодности инвестиционной альтернативы в случае, если применяется метод чистой текущей стоимости при недейственности допущения о «надежных данных».

Таким образом, оценка инвестиций с помощью данного метода основана на определении максимальной величины ставки дисконтирования, при которой проекты останутся безубыточными.

Критерии NPV, IRR
и Р/, наиболее часто применяемые в инвестиционном анализе, являются фактически разными версиями одной и той же концепции, и поэтому их результаты связаны друг с другом. Таким образом, можно ожидать выполнения следующих математических соотношений для одного проекта:

NPV >
0

IRR >
СС (0

Р1>
1

NPV <
0

IRR
< СС (0

Р1<
1

IRR
= СС (0

Существуют методики, которые корректируют метод IRR
для применения в той или иной нестандартной ситуации. К одной из таких методик можно отнести метод модифицированной внутренней нормы прибыли (MIRR).